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Abstract. Recent years have witnessed great progress in image cap-
tioning based on deep learning. However, most previous methods are
limited to the original training dataset that contains only a fraction
of objects in the real world. They lack the ability to describe other
objects that are not in the original training dataset. In this paper, we
propose an object-extensible training framework that enables a widely-
used captioning paradigm to describe objects beyond the original train-
ing dataset (i.e., extended objects) by generating high-quality training
data for these objects automatically. Specifically, we design a general
replacement mechanism, which replaces the object (An object includes
the object region in the image, and the corresponding object word in the
caption) in the original training dataset with the extended object to gen-
erate new training data. The key challenge in the proposed replacement
mechanism is that it should be context-aware to get the meaningful result
that complies with common knowledge. We introduce the multi-modal
context embedding to ensure that the generated object representation
is coherent in the visual context and the generated caption is smooth
and fluent in the linguistic context. Extensive experiments show that
our method improves significantly over the state-of-the-art methods on
the held-out MSCOCO in both automatic and human evaluation.

Keywords: Image captioning · Extended objects · Context-aware
replacement

1 Introduction

Image captioning is an important task in the intersection between computer vision
and natural language processing. We have witnessed much progress in image cap-
tioning based on deep learning. However, most previous methods can only describe
objects in the original training dataset, but lack the ability to generate captions for
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other objects in the real world. For example, if the original training dataset con-
tains the image-text pairs of “giraffe” but not that of “zebra”, a caption model
built upon it can describe an image with a giraffe but fails to understand one with
a zebra.

The key issue lies in the limitation of the original training dataset that is
manually constructed and contains only a small fraction of objects in the real
world. Supposing we have a “complete” training dataset covering all objects, we
can use it to train a caption model that can describe any object. Therefore, to
enable a caption model to describe objects not in the original training dataset, a
naive solution is to manually construct additional training data for such objects.
However, this process is time-consuming and laborious, which hinders its feasi-
bility in realistic applications. A question naturally arises: can we automatically
generate training data for such objects without manual efforts?

We find that the UpDn model [2] provides convenience for us to achieve the
automatic generation. It represents the input image by object regions instead
of a single feature vector [15] or spatial grids [17], which means it does not
require direct access to the original image and only uses the object representation
instead. Extensive works (e.g., [4,9,13]) follow this captioning paradigm and all
use the object representation, which we define as UpDn-style caption model.
One merit of such models is that it makes generating training data for an object
simple. For example, we want to create a new image-text pair of the object
“zebra” that is not in the original training dataset. Suppose that we already
have an original image with the caption “a giraffe walking across the grass next
to some antelope” as shown in Fig. 1. We could simply replace the giraffe region in
the object representation of the original image by the zebra region from another
unpaired image1 to generate the object representation for the new image. And
we don’t need to generate the new image itself, which is a relatively hard task, as
the UpDn-style caption model only needs the object representation as input. To
generate the corresponding caption for this new image, we can simultaneously
do the replacement of the object word “giraffe” in the original caption and get
“a zebra walking across the grass next to some antelope”.

In this paper, we propose an object-extensible training framework that
enables the UpDn-style caption model to describe objects beyond the original
training dataset (i.e., extended objects) by generating new training data for these
objects automatically. Specifically, we introduce a general replacement mecha-
nism which replaces the object region and object word in the original training
dataset simultaneously with the object region and object word of an extended
object. The generated data can be used to train any UpDn-style caption model
as the input of the UpDn-style caption model is the object representation of an
image rather than the image itself. The entire process of data generation and
model training is automatic and requires no additional manual efforts.

The key challenge in the proposed replacement mechanism is to ensure that
the replacement result is meaningful and complies with common knowledge. In the
example of Fig. 1, if we replace the “giraffe” region-word pair (i.e., object region

1 This image is not paired with a caption and easy to obtain without manual efforts.
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Fig. 1. The framework of the general replacement mechanism.

and object word) with a “bus” region-word pair instead of the “zebra” region-word
pair, we will get ridiculous results in two aspects. First, as the bus region is not
likely to appear togetherwith grass regions or antelope regions in a real valid image,
the resulting object representation is not meaningful. Second, in the caption after
replacement, “a bus walking across the grass ...”, “bus” does not collocate with
“walking” in the natural language. Thus, to ensure that the replacement is mean-
ingful, we need to consider both the visual context of the object region and the
linguistic context of the corresponding object word. To this end, we propose the
context-aware replacement (CAR), which uses the multi-modal context embed-
ding to find the replacement with the most similar visual context and linguistic
context to the given object. In summary, our contributions are three-fold:

– We propose an object-extensible training framework that enables the UpDn-
style caption model to describe extended objects by a general replacement
mechanism.

– We introduce the multi-modal context embedding to make the replacement
process aware of the visual context and linguistic context.

– Extensive experimental results show that the proposed method outperforms
the state-of-the-art methods on the held-out MSCOCO dataset.

2 Related Work

In recent years, image captioning methods based on deep learning have made
much progress [2,12,13,15,17,19]. However, most of them can only describe the
objects in the original training dataset that is manually constructed, and are
difficult to be generalized to other objects in the real world.

Some approaches have been proposed to solve this problem. Deep Compo-
sitional Captioner (DCC) [3] pretrains a lexical classifier and a language model
on unpaired image/text data respectively, and composes them into a caption
model. It further trains the caption model on image-text pairs and transfers
knowledge between semantically-related words. Venugopalan et al. [14] extend



An Object-Extensible Training Framework for Image Captioning 801

DCC by jointly training the lexical classifier, language model and caption model
in an end-to-end manner, which obviates the explicit transfer and achieves better
performance. More recently, Yao et al. [18] incorporate the copy mechanism into
the caption model, which can not only generate a word from the language model
but also copy one from objects detected in the image. Li et al. [5] further con-
solidate the method [18] by the pointing mechanism and coverage of objects. In
addition, Mogadala et al. [8] annotate entity labels for images with the guidance
of knowledge base, and build the semantic attention and constrained inference
over these entity labels. Another approach [1] proposes the constrained beam
search, which forces the visual tags of the image to appear in the generated
caption during the inference process. Furthermore, the Decoupled Novel Object
Captioner (DNOC) [16] first generates a sentence with placeholders, and then
retrieves object words from a key-value object memory to fill them. Neural Baby
Talk [7] shares a similar spirit with DNOC, which first generates a sentence with
slots tied to object regions in the image, and then fills the slots by the corre-
sponding object words.

Previous works usually design a special model architecture for image caption-
ing to incorporate more objects, which is tightly coupled with the architecture
itself and difficultly generalized. In contrast, our solution tackles the problem in
a data-driven way, which is fully compatible with any UpDn-style caption model
and thus can seamlessly benefit from its potential improvement.

3 Methodology

3.1 Framework Overview

The general replacement mechanism is shown in Fig. 1, which is composed of the
online flow and the offline flow. Given an image-text pair (R, S) in the original
training dataset Do, we feed it into the online flow to get a new image-text pair
(R′, S′). We perform this procedure on all image-text pairs in Do to obtain an
extended training dataset De, which contains not only objects in Do but also the
extended objects. Finally, we use De to train a caption model that can generate
captions for all the objects in Wobj ∪ Wext, where Wobj and Wext denote the
vocabulary of objects in Do and that of extended objects respectively.

Online Flow. The input is an image-text pair (R, S) in the original training
dataset Do. The symbol R = {r1, r2, ..., r∗

o , ..., rM} is the object representation
of an image and S = {w1, w2, ..., w

∗
o , ..., wN} is the corresponding caption, where

r and w denote an object region and a word respectively. First, from the input we
extract the object word w∗

o ∈ Wobj and identify its corresponding object region
r∗
o via the object grounding. Then, we replace the region-word pair (r∗

o , w
∗
o) by a

new pair (r∗
e , w

∗
e) of an extended object through the context-aware replacement.

Finally, the online flow outputs a new image-text pair (R′, S′) for the extended
object, where R′ = {r1, r2, ..., r∗

e , ..., rM} and S′ = {w1, w2, ..., w
∗
e , ..., wN}.

Offline Flow. Before the data generation of online flow, we offline construct
two data structures leveraged by the context-aware replacement: (1) We build
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Fig. 2. The details of two data structures constructed by the offline flow.

the context rank table with the multi-modal context embedding, which will be
used to find the extended object word w∗

e with the most similar visual and
linguistic context to w∗

o . (2) We generate the extended object region dictionary
by the object grounding, which will be queried with w∗

e as the key to find the
corresponding object region r∗

e .

Caption Model. We employ the UpDn model [2] as a representative of UpDn-
style caption models to verify the effectiveness of our method. The model details
are elaborated in the previous work [2] and we will not go into them since our
focus is the proposed framework in this work.

3.2 Multi-modal Context Embedding

We construct the context rank table based on the similarity of visual and lin-
guistic context between object words, which is measured by the cosine similarity
of their multi-modal context embeddings. The structure of context rank table
is shown in Fig. 2. Each row corresponds to an object word in Wobj , and each
column corresponds to a rank value which is assigned to an object word in
Wobj ∪ Wext. In the corresponding row of an object word wo ∈ Wobj , we rank
each object word in Wobj ∪ Wext from high to low according to the cosine simi-
larity between its multi-modal context embedding and that of wo, and only keep
the top K rank values to ensure that the object words in the row are similar
enough to wo in both visual and linguistic context.

Now we focus on how to obtain the multi-modal context embedding of an
object word. The general idea is to align the visual representation of the object
region and the linguistic representation of the corresponding object word in
a common latent space. We train a model composed of an object detector, a
visual MLP layer fvis, a linguistic MLP layer flin, and an embedding matrix E
initialized with the pretrained GloVe embedding [10]. The input of the model is
an image with its object labels L = {l}, which is composed of the corresponding
object words of objects contained in the image. In the training process, we first
extract the object representation R of the image by an object detector, and
map each object region r ∈ R into the common latent space by the layer fvis.
Then, we also map the corresponding object word (i.e., each label l ∈ L) into
the common latent space by applying the layer flin on its embedding in E. Next,
we define the score function which measures how likely the object region r is to
contain the label l as follows:

sc(r, l) = cos sim(fvis(r), flin(E(l))), (1)
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where cos sim means cosine similarity. Furthermore, for the entire image R, the
score function of containing the label l is defined as:

sc(R, l) = max(sc(r, l)), r ∈ R. (2)

The greater value of sc(R, l) means the image R is more likely to contain the
label l and vice versa. Finally, we define the training loss on the image R:

L(R) =
∑

l∈L

∑

l′∈{LU−L}
max[0, 0.1 − sc(R, l) + sc(R, l′)], (3)

where LU denotes the complete set of labels of all images in the training data,
and l′ is a label that does not appear in the image R. Minimizing L(R) is
equivalent to increasing sc(R, l) and decreasing sc(R, l′) simultaneously, which
forces the labels in L to approach the image R and keep other labels in {LU −L}
away from it in the common latent space. After training, we use flin(E(l)) as the
multi-modal context embedding of l, which is the projection of l in the common
latent space.

The cosine similarity of the multi-modal context embeddings can reflect the
similarity of object words in both visual and linguistic context. On the one
hand, the training loss L(R) makes the labels in similar images (i.e., with a
similar visual context) close to each other in the common latent space. On the
other hand, we have already incorporated the linguistic context into the training
process at the beginning by initializing E with the pretrained GloVe embedding.

3.3 Object Grounding

The object grounding module grounds an object word to its corresponding object
region in the image. In the proposed method, we leverage this module to (1)
ground the object word w∗

o to its corresponding object region r∗
o in the original

image and (2) build the extended object region dictionary. Next, we elaborate
how we achieve the above two goals respectively.

Ground w∗
o to r∗

o . Given the object word w∗
o , we explore two kinds of strategies

to find its corresponding object region r∗
o in the object representation R of the

original image. The first kind of strategy requires ground-truth bounding boxes
of the image that are manually annotated. We first pick out the ground-truth
bounding boxes with the object category corresponding to w∗

o , denoted as B,
and then identify r∗

o as follows:

r∗
o = {r ∈ R|IoU(r, b) > T}, (r, b) ∈ R × B, (4)

where T ∈ [0.0, 1.0] is the threshold value of IoU. The second kind of strategy
requires no manual efforts and is more general. It leverages the object categories
of object regions in R, which are output by the object detector. Specifically, we
regard all the object regions in R with the object category corresponding to w∗

o

as the object region r∗
o .
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Build the Extended Object Region Dictionary. The structure of the
extended object region dictionary is shown in Fig. 2. Each key corresponds to
an extended object word we ∈ Wext, and its value consists of a series of object
regions corresponding to we from different unpaired images. Each object region
re in the value is obtained by grounding we in the object representation R of
an unpaired image.

There are also two kinds of strategies for grounding we to re. The first needs
ground-truth bounding boxes of the image, while the second leverages the object
categories with their confidence scores output by the object detector. In the first
kind of strategy, we identify re as follows:

re = argmax
r∈R

IoU(r, b), (r, b) ∈ R × B, (5)

where B denotes the ground-truth bounding boxes with the object category
corresponding to we. In the second kind of strategy, we first find out all the object
regions with the object category corresponding to we in the object representation
R, and then pick the one with the highest confidence score as re.

Note that the grounding of the object word w∗
o and that of the extended

object words in Wext are slightly different, which makes the replacement more
precise and thus improves the quality of the new generated image-text pair.
When grounding w∗

o to r∗
o , we adopt a relatively loose screening condition to

find out all the object regions possibly corresponding to w∗
o in the original image,

which means that the notation r∗
o may represent multiple object regions instead

of only one. Since the object detector may output multiple object regions that
largely overlap for the same object in an image, this loosely grounding can guar-
antee all of them can be completely removed in the replacement. When building
the extended object region dictionary, we ground each extended object word
we ∈ Wext to only the most accurate object region in an unpaired image. In this
way, when we replace r∗

o with r∗
e , we guarantee the object region r∗

e added into
the object representation exactly contains the extended object.

3.4 Context-Aware Replacement for Automatic Data Generation

Given an image-text pair from the original training dataset Do, we generate a
new image-text pair of the extended object in the context-aware replacement.
We replace the object word w∗

o in the original caption by the extended object
word w∗

e , and replace the object region r∗
o corresponding to w∗

o in the object rep-
resentation of the original image by the extended object region r∗

e corresponding
to w∗

e . We describe the context-aware replacement in Algorithm 1.
To ensure the replacement result is meaningful, we need to find the region-

word pair (r∗
e , w

∗
e) with the most similar context to the region-word pair (r∗

o , w
∗
o).

First, we extract the corresponding row of w∗
o from the context rank table, and

select the most top-ranked extended object word in the row as w∗
e . Then, we

take w∗
e as the key to retrieve its corresponding value from the extended object

region dictionary, and randomly select an object region as r∗
e from a series of

object regions in the value. Note that we do not perform the replacement if there
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Algorithm 1. Context-Aware Replacement (CAR)
Input:
1: An image-text pair (R, S) containing a region-word pair (r∗

o , w∗
o);

2: Context rank table CRT;
3: Extended object region dictionary EORD.
Output:
4: A new image-text pair (R′, S′).
5: CRT(w∗

o) ← corresponding row of w∗
o in CRT

6: if Wext ∩ CRT(w∗
o) �= ∅ then

7: w∗
e ← top-ranked element in Wext ∩ CRT(w∗

o)
8: EORD(w∗

e) ← the value of key w∗
e in EORD

9: r∗
e ← retrieve an object region from EORD(w∗

e)
10: S′ ← in S, replace w∗

o by w∗
e

11: R′ ← in R, replace r∗
o by r∗

e

12: return (R′, S′)
13: else
14: do not perform the replacement
15: end if

is no extended object word in the corresponding row of w∗
o in the context rank

table, which means we can not find a replacement similar enough to the object
in the original image-text pair in both visual and linguistic context.

For each image-text pair in Do, we perform the context-aware replacement
to generate a new image-text pair. Finally, we gather all the new image-text
pairs, and combine them with Do to obtain an extended training dataset De.
Comparing with training on Do, the additional computation cost of training on
De is empirically sub-linear, since each image-text pair in Do yields at most
one new image-text pair (sometimes the replacement will not be successfully
performed as mentioned above). This indicates that our method can scale up on
datasets with different sizes.

4 Experiments

4.1 Experimental Setup

Dataset. For the convenience of comparing with previous works, we evaluate
our method on the held-out MSCOCO dataset, a widely-used benchmark [3]
for image captioning on objects not in the original training dataset. The dataset
consists of four splits: training, validation, test and rest. Follow the previous work
[3], we employ a subset of MSCOCO [6] training set as the training split, which
excludes all the image-text pairs containing at least one of the eight objects:
bottle, bus, couch, microwave, pizza, racket, suitcase, zebra. The eight objects are
used as the extended objects in this setting. We use 50% of MSCOCO validation
set as the validation split, and set aside the other 50% for the test split. We take
the excluded part in MSCOCO training set as the rest split.
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Table 1. Performance (%) on held-out MSCOCO test split.

Model bottle bus couch microwave pizza racket suitcase zebra Avg. F1 CIDEr METEOR SPICE

DCC [3] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8 59.1 21.0 13.4

NOC [14] 14.9 69.0 43.8 37.9 66.5 65.9 28.1 88.7 51.8 – 20.7 –

Base+T4 [1] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0 77.9 23.3 15.9

KGA-CGM [8] 26.4 54.2 42.1 50.9 70.8 75.3 25.6 90.7 54.5 – 22.2 14.6

LSTM-C [18] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7 – 23.0 –

DNOC [16] 33.0 76.9 54.0 46.6 75.8 33.0 59.5 84.6 57.9 – 21.6 –

NBT [7] 14.0 74.8 42.8 63.7 74.4 19.0 44.5 92.0 53.2 84.0 23.9 16.6

LSTM-P [5] 28.7 75.5 47.1 51.5 81.9 47.1 62.6 93.0 60.9 88.3 23.4 16.6

CAR 29.4 75.7 49.7 56.0 73.5 18.7 50.3 94.4 56.0 101.9 26.1 19.3

CAR + T2 37.4 78.5 52.2 58.7 76.6 39.2 56.1 94.5 61.7 100.1 25.8 19.2

In the experiment, we use the training split as the original training dataset Do

(351134 image-text pairs), and generate 302179 new image-text pairs to obtain
the extended training dataset De (653313 image-text pairs). We perform the val-
idation and testing on the corresponding splits respectively. There is no overlap
of data between model training and evaluation.

Evaluation. On the one hand, we evaluate the captioning performance on auto-
matic metrics. On the other hand, We also compute F1-score for the eight
extended objects respectively. For an image in the test split, we regard it as
a true positive example of an extended object only if its generated caption and
at least one of its ground-truth captions both mention the object.

Implementation Details. For each image, we take a pretrained Faster R-CNN
[11] as the object detector to extract 36 object regions as its object representa-
tion. This is aligned with the strong baselines DNOC and NBT which also use
the Faster R-CNN feature. Additionally, considering the generality, we perform
object grounding based on the output of Faster R-CNN, instead of ground-truth
bounding boxes (We discuss the difference in Sect. 4.5). In the context rank table,
we set the value of K to 20.

4.2 Comparison with SOTA Methods

We compare our method context-aware replacement (abbreviated as CAR) with
state-of-the-art methods in Table 1. We can see that our method CAR achieves
comparable average F1-score (Avg. F1) of extended objects compared to the
SOTA methods, which shows that our approach successfully generates captions
for extended objects. By using the constrained beam search [1] (CAR + T2),
our method achieves the best average F1-score (61.7%) while maintaining decent
captioning performance. However, the results on F1-score can only reflect that
the generated caption correctly mentions the corresponding object word of the
extend object that appears in the image. We should also focus on the over-
all captioning performance. We observe that CAR significantly outperforms all
the SOTA methods on automatic metrics. Particularly, CAR improves over the
competitive baseline LSTM-P by 13.6% on CIDEr, 2.7% on METEOR and 2.7%
on SPICE. This indicates that the new generated training data is high-quality
enough for training a caption model to generate natural and fluent captions.
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Table 2. Human evaluation (%) on a sampled subset of held-out MSCOCO test split.
The notation “both” means the judgement holds in both criteria.

Judgement CAR vs. UpDn CAR vs. NBT

object coverage consistency both object coverage consistency both

CAR is better 69.67 ± 0.02 43.00 ± 0.03 38.33 ± 0.06 46.33 ± 0.06 37.67 ± 0.11 23.00 ± 0.02

UpDn/NBT is better 9.00 ± 0.09 25.33 ± 0.00 7.00 ± 0.09 24.33 ± 0.16 35.67 ± 0.11 16.67 ± 0.04

two models are equal 21.33 ± 0.10 29.33 ± 0.04 13.67 ± 0.11 31.67 ± 0.02 26.67 ± 0.39 13.00 ± 0.08

4.3 Human Evaluation

To complement the automatic metrics, we re-implement the strong baseline NBT
[7], and perform the human evaluation on a sampled subset of the held-out
MSCOCO test split to compare our method CAR with it. We also take the
UpDn model [2] for comparison. For each image, we generate three captions with
the compared models respectively, and randomly shuffle them to avoid potential
bias. We ask three human evaluators to compare the generated captions in pair.

Evaluation Criteria. Given two captions generated by different models for the
same image, the evaluators make a judgement about which one is better in two
aspects respectively. The first is object coverage. This criterion reflects how well
the caption covers the objects in the image. If the image contains an extended
object, we also tell the evaluators to focus more on it. The second is consistency.
It measures how consistent the caption is with the image content.

Evaluation Results. We report the results of human evaluation in Table 2.
Comparing with both UpDn and NBT, our method CAR generates more cap-
tions which are better on either object coverage or consistency. Considering the
two criteria simultaneously, our approach also outperforms the other methods.

4.4 Qualitative Examples

As shown in Fig. 3, our method CAR describes the extended objects in all the
examples while the other methods not, which verifies its effectiveness of incor-
porating the extended objects into the caption generation. The red bounding
box in an image indicates the object region with the largest attention weight
when CAR generate the highlighted word. We observe that red bounding boxes
fit well with the extended objects in the images, which reflects that our method
really learns to ground the extended objects in the images correctly.

4.5 Discussion

Ablation Study. We compare our method CAR with its two variants in
Table 3a: 1) UpDn [2]. It represents an UpDn-style caption model which is trained
only on the original training dataset. 2) General Replacement. Besides the origi-
nal training dataset, it also generates new training data for extended objects by
the proposed replacement mechanism to assist the model training. However, it
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Table 3. Discussion on the ablation study of our approach CAR and the effectiveness
of using the ground-truth bounding boxes.

(a) Ablation study to demonstrate contribu-

tions from “replacement (R)” and “context-

aware (CA)” in CAR.

Model R CA Avg. F1

UpDn 0.0

General Replacement � 48.4

CAR � � 56.0

(b) Performance on held-out MSCOCO test

split without/with leveraging the ground-

truth bounding boxes.

Model Avg. F1 CIDEr METEOR SPICE

CAR 56.0 101.9 26.1 19.3

CAR + bbox 56.6 102.2 26.3 19.4

Fig. 3. Qualitative examples of captions generated by different methods.

does not consider the visual context and linguistic context, and just randomly
selects an extended object as the replacement.

First, by adding the “replacement (R)”, general replacement performs much
better than UpDn on average F1-score, while UpDn cannot generate captions
for any extended object (Avg. F1 is 0.0%). This validates the effectiveness of the
proposed replacement mechanism on describing extended objects. Second, by
further adding the “context-aware (CA)”, CAR increases 7.6% on average F1-
score. This indicates that it is necessary to ensure that the replacement result is
meaningful and complies with common knowledge, which improves the quality
of generated training data and thus is beneficial to model training.

Using Ground-Truth Bounding Boxes. As shown in Table 3, the perfor-
mance of our method is further boosted by leveraging the ground-truth bound-
ing boxes (CAR + bbox) to perform the object grounding. This is reasonable
since better grounding will lead to more precise replacement and thus improve
the quality of generated training data.

5 Conclusion

In this paper, we propose an object-extensible training framework based on a
general replacement mechanism, which focuses on the training data generation
of extended objects and is compatible with any UpDn-style caption model. It
paves a new data-driven way to generate captions for extended objects. To ensure
that the generated data is meaningful and complies with common knowledge,
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we introduce the multi-modal context embedding to make the replacement pro-
cess aware of both visual context and linguistic context. It guarantees that the
generated object representation is coherent in visual context and the generated
caption is smooth and fluent in linguistic context. Extensive experiments con-
ducted on held-out MSCOCO shows that our method outperforms the SOTA
methods in both automatic and human evaluation.
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