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ABSTRACT

Improving the captioning performance on low-resource lan-

guages by leveraging English caption datasets has re-

ceived increasing research interest in recent years. Existing

works mainly fall into two categories: translation-based and

alignment-based approaches. In this paper, we propose to

combine the merits of both approaches in one unified archi-

tecture. Specifically, we use a pre-trained English caption

model to generate high-quality English captions, and then

take both the image and generated English captions to gen-

erate low-resource language captions. We improve the cap-

tioning performance by adding the cycle consistency con-

straint on the cycle of image regions, English words, and low-

resource language words. Moreover, our architecture has a

flexible design which enables it to benefit from large monolin-

gual English caption datasets. Experimental results demon-

strate that our approach outperforms the state-of-the-art meth-

ods on common evaluation metrics. The attention visualiza-

tion also shows that the proposed approach really improves

the fine-grained alignment between words and image regions.

Index Terms— image captioning, low-resource lan-

guage, cycle consistency, fine-grained alignment

1. INTRODUCTION

Automatically generating image captions is an important and

challenging task in the intersection between computer vision

and natural language processing. Recent years have wit-

nessed exciting progress in this field based on deep learning

methods [1–6]. Most caption datasets [7–9] in these works are

collected in the English language. However, for people who

don’t speak English, there are strong needs for image caption-

ing in languages other than English. There are some caption

datasets [10, 11] collected in languages other than English,

but the scale of these datasets is relatively small compared to

that of various English caption datasets. Thus, such languages

are considered as a low-resource language for the captioning
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task. Improving the captioning performance on low-resource

languages by leveraging English caption datasets has received

increasing research interest in recent years.

To improve the captioning performance on a low-resource

language with an English caption dataset, current works

[11–15] can be categorized into two different approaches:

translation-based and alignment-based. The first kind of ap-

proach is based on translation [12–14]. Based on machine

translation models, they usually translate generated English

captions into the low-resource language, or exploit these

translations to construct a pseudo caption corpus and train a

caption model for the low-resource language. However, these

methods are limited by the quality of translations and suffer

from the difference of data distributions between caption data

and translation data. The second kind of approach is based

on alignment in the joint embedding space. The rationale of

these methods is to learn better alignment between images

and their corresponding sentences in a common latent space

by involving English captions, and better alignment leads to

better quality of caption generation in the low-resource lan-

guage. Miyazaki and Shimizu [11] enhance the encoder of

a Japanese caption model by pre-training it on a large En-

glish caption dataset MSCOCO [9]. Elliott et al. [15] pro-

pose a multimodal architecture to generate captions from the

features of both images and English captions. These models

actually do coarse-level alignment between images and sen-

tences in the joint embedding space.

In this work, we propose to combine the merits of both ap-

proaches in one unified architecture. To be specific, we design

an architecture which first generates English captions from

the image and then generates low-resource language (i.e.,
German) captions given both the image and the generated En-

glish captions as shown in Fig. 1. There are three advantages

of the proposed architecture. First, the English decoder could

benefit from rich-resource English caption datasets through

pre-training. As the English decoder is decoupled from other

parts in our architecture, we could pre-train the English de-

coder on a large monolingual English caption dataset and then

finetune it with other parts in the architecture on a multilin-

gual dataset. Second, the low-resource language decoder ben-
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Fig. 1. Architecture overview. The thick arrows indicate the data flow of inference. The purple ones depict the translation

process while the red thin arrows depict the fine-grained alignment among image regions, English words, and German words.

efits from the generated high-quality English captions. In our

architecture, the low-resource language decoder depends not

only on the image but also on the generated English captions.

The dependency on the English captions could be considered

as imitating the translation-based approach. Third, we intro-

duce fine-grained alignment between image regions, English

words and low-resource language words through cycle con-

sistency. For example, the image region of a dog should cor-

respond to the word “dog” in the English caption and word

“Hund” in the German caption simultaneously. We achieve

this by adding cycle consistency on three attentions: the atten-

tion in the English decoder conditioned on image regions, the

attention in the low-resource language decoder conditioned

on image regions, and another attention in the low-resource

language decoder conditioned on English words. These three

attentions should be consistent in the cycle of image regions,

English words and low-resource language words.

In summary, our main contributions are as follows:

• We propose an architecture that combines the merits of

both translation-based and alignment-based approaches

to improve low-resource language captioning.

• We improve the performance by adding the cycle con-

sistency constraint on the cycle of image regions, En-

glish words and low-resource language words.

• Our architecture has a flexible design which enables

it to benefit from large monolingual English caption

datasets.

2. METHODOLOGY

We first provide an overview of the proposed architecture and

then introduce each component in detail. Finally, the loss

function and training process will be elaborated.

2.1. Overview

Fig.1 shows an overview of the proposed architecture, which

consists of two parts. Part1 is a pre-trained English caption

model, including an image encoder Eimg and an English de-

coder Den. Part2 is a German caption model, including an

encoder Ecap for generated English captions, a German de-

coder Dde, and a cycle consistency constraint. In the infer-

ence phase, we first feed an image into Eimg to get its cor-

responding English caption from Den as a pseudo English

caption. Next, we feed the pseudo English caption into Ecap.

Finally, Dde generates a German caption by taking the out-

puts from both Eimg and Ecap.

2.2. Pre-trained English Caption Model

For the English caption model in Part1, we follow the soft-

attention approach proposed by [2]. We use a pre-trained

ResNet-152 [16] as the encoder Eimg and an LSTM [17] as

the decoder Den. For a given image I , we feed it into Eimg

to extract the feature vectors V = [v1;v2; ...;vL]. Then we

calculate the attention weights αen
t and context vector cent at

every step t.

eti = fatt(vi,ht−1), (1)

αen
ti =

exp(eti)∑L
k=1 exp(etk)

, i ∈ {1, 2, ..., L}, (2)

cent = φ(αen
t ,V ), (3)

where fatt is an attention model based on the multilayer per-

ceptron, ht−1 is the previous hidden state of Den and φ is

a function that returns a weighted summation of the feature

vectors V based on αen
t . At last, the output word probability

is calculated conditioned on cent , ht−1 and the embedding of

the previously generated English word yent−1:

p(yent |cent ,ht−1,y
en
t−1) =

Softmax(LSTM([cent ;yen
t−1],ht−1)),

(4)



here we use the same notation for the word and its embedding

with a slight abuse of notations.

2.3. German Caption Model

For the model in Part2, we use a bidirectional GRU [18] as the

English caption encoder Ecap and follow the doubly-attentive

architecture [19, 20] for the German decoder Dde. The Ger-

man decoder Dde has two attentions over image regions and

English words respectively. For the former, we compute the

context vector cdet in a similar way of cent . For the latter,

we calculate the attention weights βt over the hidden states

G = [g1; g2; ...; gN ] of Ecap and the context vector zt at ev-

ery step t as follows:

e′tj = f ′
att(gj , st−1), (5)

βtj =
exp(e′tj)∑N
k=1 exp(e

′
tk)

, j ∈ {1, 2, ..., N}, (6)

zt = φ(βt,G), (7)

where f ′
att is the attention model, and st−1 is the previous

hidden state of Dde. Thus the output word probability is com-

puted as follows:

p(ydet |cdet , zt, st−1,y
de
t−1) =

Softmax(LSTM([cdet ; zt;y
de
t−1], st−1)).

(8)

2.4. Cycle Consistency

Fig.2 shows a toy example of the cycle consistency of im-

age regions, English words, and German words. We assume

that the attention weights of “Hund” over the English words

are (0.1, 0.9, 0.0, 0.0) in the word order of the sentence. For

simplicity, we assume that the image only has four regions

{R1, R2, R3, R4}, and the attention weights of “Hund” over

these regions are (0.0, 0.9, 0.0, 0.1). Similarly, each word in

the English caption has a set of attention weights over these

regions. If we want to know the attention weight of “Hund”
on R2, there are two ways to get the answer. One is to pick

it out directly, and the value is 0.9. We call it the direct atten-

tion. The other is to sum the attention weights on R2 of every

word in the English caption based on their relative importance

on the generation of “Hund”. As Fig.2 shows, the value cal-

culated in this way is 0.75, and we call it the indirect atten-

tion. Theoretically, the values got in these two ways should

be equal if the attentions are computed accurately. This is ex-

actly the cycle consistency. Moreover, for a caption model,

the more accurate the attention is, the more reasonable cap-

tions it generates. Therefore, it is natural to improve the qual-

ity of the low-resource language captioning by guaranteeing

the cycle consistency.

Now we describe the cycle consistency in a formal way.

Given an Image-English-German triple, each word ydem
in the German caption has two sets of attention weights αde

m
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Fig. 2. A toy example of the cycle consistency. The direct

attention of “Hund” on R2 is 0.9. And the indirect attention

of “Hund” on R2 is 0.75 (0.1×0.3+0.9×0.8+0.0×0.4+
0.0× 0.5 = 0.75).

and βm over the image and English caption respectively. In

addition, each word yenj in the English caption has a set of

attention weights αen
j over the image. If the models in our

architecture were all perfect, the following equation should

be established:

αde
mi =

N∑

j=1

βmjα
en
ji ,

i ∈ {1, 2, ..., L},m ∈ {1, 2, ...,M},
(9)

where M is the length of the German caption, and N is the

length of the English caption.

Next we briefly explain why Eq.9 is mathematically cor-

rect. We consider a set of attention weights as a conditional

probability distribution, image regions as random variable X ,

English words {Y1, Y2, ..., Yj , ..., YN} as random variable Y ,

and German words as random variable Z. Obviously, X and

Z are conditional independent given Y . Then Eq.9 can be

written as:

P (X|Z) =
N∑

j=1

P (X,Yj |Z) =
N∑

j=1

P (X|Yj , Z)P (Yj |Z)

=
N∑

j=1

P (X|Yj)P (Yj |Z).

(10)

2.5. Loss Function

The Loss function of the proposed approach is composed of

two parts. One is the summation of negative log likelihood of

the German word (superscript omitted here) at each step t:

Lnll = −
M∑

t=1

log p(yt|y1, y2, ..., yt−1). (11)



The other is the cycle consistency loss, the Euclidean Dis-

tance between the direct attention and indirect attention:

Lcyc = ||Ade −BAen||2, (12)

where Ade = [αde
1 ;αde

2 ; ...;αde
M ]T is a matrix of size M ×L,

B = [β1;β2; ...;βM ]T is a matrix of size M×N , and Aen =
[αen

1 ;αen
2 ; ...;αen

N ]T is a matrix of size N × L.

2.6. Training Process

We elaborate the training process in Algorithm 1, which can

be divided into three stages. At the first stage, we pre-train

the English caption model in Part1 using Image-English
pairs. At the second stage, we train the German caption model

in Part2 using Image-English-German triples. Specifi-

cally, we infer the two attentions of German words over image

regions and English words, and calculate Lnll. Then, to form

the attention cycle, we further extract Image-English pairs

from the Image-English-German triples, and feed them

into the pre-trained English caption model to get the atten-

tion of English words over image regions. Finally, with these

three attentions, we then compute Lcyc. At the third stage, we

update model parameters with Lnll and Lcyc.

It is worth noting that the Image-English pairs

for Part1 may come from the Image-English-German
triples used in Part2, or any other large monolingual dataset.

Algorithm 1 Training Process

Input:
Image-English pairs,

mini-batches of Image-English-German triples

{b1, b2, ..., bn},

randomly initialized models Eimg , Ecap, Den, Dde, and

their parameters Θ
Output:

Trained model parameters Θ.

1: pre-train Eimg and Den using Image-English pairs

2: while not converge do
3: for all b in {b1, b2, ..., bn} do
4: infer αde to align Eimg and Dde

5: infer β to align Ecap and Dde

6: infer αen to align Eimg and Den

7: calculate Lcyc for αde, β, αen

8: calculate Lnll for Dde

9: update Θ with ∇Lnll +∇Lcyc

10: end for
11: end while
12: return Θ

3. EXPERIMENTS

In this section, we first introduce the dataset and experimental

settings. Then, we compare our approach with the baselines

on common metrics. Finally, we validate the effectiveness

of cycle consistency on fine-grained alignment by visualizing

the attentions.

3.1. Dataset

The Flickr30K dataset [8] consists of 29k, 1,014 and 1k im-

ages for training, validation and testing respectively. Each

image is associated with five English captions. The Multi30K

dataset extends Flickr30K in two ways with translated and in-

dependent German sentences. To form a cycle by combining

both translation-based and alignment-based approaches, we

perform experiments on the translated version of Multi30K,

denoted by Multi30K-Trans. For each image in Flickr30K,

Multi30K-Trans adds a manually translated German cap-

tion for only one of the English captions to compose an

Image-English-German triple.

3.2. Experimental Settings

Data Preprocessing Images are resized to 450× 450 for uni-

formity and then fed into ResNet-152 to extract features using

the layer before the penultimate average pooling layer. We

don’t finetune ResNet-152 considering the time cost. When

building English and German vocabularies, we remove punc-

tuations and filter the tokens whose frequency is below 5.

Model and Training The hidden size of LSTM and em-

bedding size are 512, and dropout rate is 0.5 for all models.

Maximum epoch is set to 50 and we apply early stopping for

model selection if a model does not improve the performance

on the validation set on CIDEr for more than 20 epochs. And

we use Adam optimizer [21] with a learning rate of 4× 10−4

and the batch size of 32.

Inference and Evaluation Beam size for inference is 3

and generated captions longer than 50 tokens are discarded.

We evaluate the inference results on metrics CIDEr, BLEU4

and METEOR based on the provided implementation1.

3.3. Quantitative Analysis

We first perform experiments on Multi30K-Trans to validate

the effectiveness of the cycle consistency of our approach.

The Image-Englsh pairs for Part1 are extracted from the

Image-English-German triples of Multi30K-Trans. We

denote our approach as Cycle-Attn and compare it with the

following baselines:

• Trans [12] This method first pre-trains a machine trans-

lation model, then translates generated English captions

into German directly.

• Soft-Attn [2] It trains a soft attention caption model on

images and corresponding German captions directly.

1https://github.com/tylin/coco-caption



German caption Original image Dual-Attn+ Cycle-Attn+

Ein brauner Hund (dog) 
gräbt im dreck.

Vier Schwarze männer (men) 
sitzen auf den Stufen einer 
Kirche.

Eine Frau in einem
grün gemusterten Hemd 
telefoniert (telephone, verb) 
mit dem Handy.

Fig. 3. Attention visualization on German captions. Follow the style in [2], white indicates the attended regions, and underlines
indicate the corresponding words. For better readability, we display the English definitions of German words in brackets, and

identify the regions which the attention should focus on with red frames.

• Dual-Attn [20] It trains an English caption model and

a doubly-attentive model for generating German cap-

tions. When testing, it uses generated English captions

from the pre-trained model as pseudo English captions.

Moreover, to demonstrate that our architecture can ben-

efit from large monolingual English caption datasets, we use

the Image-English pairs from Flickr30K, which has more

(five) English captions for each image, to pre-train the Part1

English caption model. We denote this variant of Cycle-Attn

as Cycle-Attn+. In addition, we also provide a variant of

Dual-Attn (denoted by Dual-Attn+) for fair comparison.

Model CIDEr BLEU4 METEOR

Trans [12] 37.82 5.28 10.27

Soft-Attn [2] 38.59 5.12 10.86
Dual-Attn [20] 40.57 5.32 10.51

Cycle-Attn 41.91 5.67 10.59

Dual-Attn+ 42.91 5.54 10.79

Cycle-Attn+ 43.78 5.71 10.86

Table 1. Experimental results on common metrics.

Table 1 shows the experimental results. Firstly, we ob-

serve that Cycle-Attn outperforms both Soft-Attn and Trans

in most metrics. Particularly, Cycle-Attn outperforms Soft-

Attn by +3.32 (8.60%) CIDEr, and +0.55 (10.74%) BLEU4.

This observation demonstrates that the proposed architec-

ture can improve low-resource language captioning of either

translation-based or alignment-based approach by combin-

ing their merits. Secondly, Cycle-Attn achieves better per-

formance on all metrics comparing with Dual-Attn. For ex-

ample, it improves CIDEr by +1.34 (3.30%) and BLEU4

by +0.35 (6.58%), which validates the effectiveness of the

cycle consistency. Finally, by pre-training the English cap-

tion model on Flickr30K instead of Multi30K-Trans, Cycle-

Attn+ outperforms Cycle-Attn on all metrics. This demon-

strates the notable benefit from rich-resource datasets for the

proposed architecture. Moreover, Cycle-Attn+ also performs

better than Dual-Attn+ on all metrics. This indicates that

our approach can benefit from the cycle consistency and rich-

resource dataset simultaneously.

3.4. Qualitative Analysis

We visualize the attention weights obtained by Dual-Attn+

and Cycle-Attn+ in Fig.3. Specifically, we feed the same im-

age and its German ground truth into both models to infer the

attention weights over the image. Note that we use the Ger-

man ground truth here because generated German captions

from the two models may contain different words, which is

not conducive to fair comparison. As we can see in Fig.3,

there are three images, each of which is a representative sit-

uation that the attention mechanism needs to handle. The

first and second rows represent a single-object situation and

a multiple-object situation respectively, and the third row fo-

cuses on the detail of an image which is hard to capture.

Now we compare the quality of the attentions. We observe

that Cycle-Attn+ performs better than Dual-Attn+ in all situ-



ations significantly. Particularly, in the multiple-object situa-

tion, Cycle-Attn+ even outlines all four people in the image.

This fully demonstrates that the cycle consistency really helps

the model learn better fine-grained alignment, which leads to

better German captions.

4. CONCLUSION

In this paper, we propose a method to combine the merits of

existing approaches to improve low-resource language cap-

tioning in one unified architecture. The proposed method in-

corporates generated English captions into generating low-

resource language captions, and improve the fine-grained

alignment by cycle consistency. Flexible architecture of

the proposed method also enables us to benefit from large

monolingual English caption datasets. Experimental results

demonstrate that the proposed method really achieves better

performance on common evaluation metrics comparing with

the state-of-the-art methods and improves the fine-grained

alignment. In the future, we plan to improve image caption-

ing for low-resource languages distant from English, such as

Japanese, which are difficult to align with English in the joint

embedding space.
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